direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C52⋊C6, C5⋊D5⋊C6, (C5×C10)⋊C6, C52⋊(C2×C6), C52⋊C3⋊3C22, (C2×C5⋊D5)⋊C3, (C2×C52⋊C3)⋊2C2, SmallGroup(300,27)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C52⋊C3 — C52⋊C6 — C2×C52⋊C6 |
C52 — C2×C52⋊C6 |
Generators and relations for C2×C52⋊C6
G = < a,b,c,d | a2=b5=c5=d6=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b2c3, dcd-1=b-1c-1 >
Character table of C2×C52⋊C6
class | 1 | 2A | 2B | 2C | 3A | 3B | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 6D | 6E | 6F | 10A | 10B | 10C | 10D | |
size | 1 | 1 | 25 | 25 | 25 | 25 | 6 | 6 | 6 | 6 | 25 | 25 | 25 | 25 | 25 | 25 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ8 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ9 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ10 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ11 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ12 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ13 | 6 | -6 | 0 | 0 | 0 | 0 | 1+√5 | -3-√5/2 | -3+√5/2 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 3+√5/2 | 3-√5/2 | -1+√5 | -1-√5 | orthogonal faithful |
ρ14 | 6 | 6 | 0 | 0 | 0 | 0 | 1+√5 | -3-√5/2 | -3+√5/2 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | -3-√5/2 | -3+√5/2 | 1-√5 | 1+√5 | orthogonal lifted from C52⋊C6 |
ρ15 | 6 | 6 | 0 | 0 | 0 | 0 | 1-√5 | -3+√5/2 | -3-√5/2 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | -3+√5/2 | -3-√5/2 | 1+√5 | 1-√5 | orthogonal lifted from C52⋊C6 |
ρ16 | 6 | 6 | 0 | 0 | 0 | 0 | -3-√5/2 | 1-√5 | 1+√5 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | -3+√5/2 | -3-√5/2 | orthogonal lifted from C52⋊C6 |
ρ17 | 6 | -6 | 0 | 0 | 0 | 0 | 1-√5 | -3+√5/2 | -3-√5/2 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 3-√5/2 | 3+√5/2 | -1-√5 | -1+√5 | orthogonal faithful |
ρ18 | 6 | -6 | 0 | 0 | 0 | 0 | -3-√5/2 | 1-√5 | 1+√5 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 3-√5/2 | 3+√5/2 | orthogonal faithful |
ρ19 | 6 | -6 | 0 | 0 | 0 | 0 | -3+√5/2 | 1+√5 | 1-√5 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 3+√5/2 | 3-√5/2 | orthogonal faithful |
ρ20 | 6 | 6 | 0 | 0 | 0 | 0 | -3+√5/2 | 1+√5 | 1-√5 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | -3-√5/2 | -3+√5/2 | orthogonal lifted from C52⋊C6 |
(1 6)(2 4)(3 5)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 23)(14 24)(15 19)(16 20)(17 21)(18 22)
(1 9 14 17 12)(2 18 10 7 15)(3 16 8 11 13)(4 22 28 25 19)(5 20 26 29 23)(6 27 24 21 30)
(1 14 12 9 17)(2 15 7 10 18)(4 19 25 28 22)(6 24 30 27 21)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
G:=sub<Sym(30)| (1,6)(2,4)(3,5)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22), (1,9,14,17,12)(2,18,10,7,15)(3,16,8,11,13)(4,22,28,25,19)(5,20,26,29,23)(6,27,24,21,30), (1,14,12,9,17)(2,15,7,10,18)(4,19,25,28,22)(6,24,30,27,21), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)>;
G:=Group( (1,6)(2,4)(3,5)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22), (1,9,14,17,12)(2,18,10,7,15)(3,16,8,11,13)(4,22,28,25,19)(5,20,26,29,23)(6,27,24,21,30), (1,14,12,9,17)(2,15,7,10,18)(4,19,25,28,22)(6,24,30,27,21), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30) );
G=PermutationGroup([[(1,6),(2,4),(3,5),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,23),(14,24),(15,19),(16,20),(17,21),(18,22)], [(1,9,14,17,12),(2,18,10,7,15),(3,16,8,11,13),(4,22,28,25,19),(5,20,26,29,23),(6,27,24,21,30)], [(1,14,12,9,17),(2,15,7,10,18),(4,19,25,28,22),(6,24,30,27,21)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)]])
G:=TransitiveGroup(30,68);
Matrix representation of C2×C52⋊C6 ►in GL6(𝔽31)
30 | 0 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 0 | 30 |
19 | 30 | 0 | 0 | 0 | 0 |
20 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 18 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 30 |
0 | 0 | 0 | 0 | 20 | 30 |
30 | 1 | 0 | 0 | 0 | 0 |
11 | 19 | 0 | 0 | 0 | 0 |
0 | 0 | 19 | 30 | 0 | 0 |
0 | 0 | 20 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 19 | 30 | 0 | 0 |
0 | 0 | 19 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 30 |
0 | 0 | 0 | 0 | 19 | 12 |
19 | 30 | 0 | 0 | 0 | 0 |
19 | 12 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(31))| [30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30],[19,20,0,0,0,0,30,30,0,0,0,0,0,0,12,12,0,0,0,0,18,0,0,0,0,0,0,0,19,20,0,0,0,0,30,30],[30,11,0,0,0,0,1,19,0,0,0,0,0,0,19,20,0,0,0,0,30,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,0,0,19,19,0,0,0,0,30,12,19,19,0,0,0,0,30,12,0,0,0,0,0,0,19,19,0,0,0,0,30,12,0,0] >;
C2×C52⋊C6 in GAP, Magma, Sage, TeX
C_2\times C_5^2\rtimes C_6
% in TeX
G:=Group("C2xC5^2:C6");
// GroupNames label
G:=SmallGroup(300,27);
// by ID
G=gap.SmallGroup(300,27);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,5,963,793,6004,464]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^5=c^5=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^2*c^3,d*c*d^-1=b^-1*c^-1>;
// generators/relations
Export
Subgroup lattice of C2×C52⋊C6 in TeX
Character table of C2×C52⋊C6 in TeX